top of page

 

 

     The overall of my research goal is to synthesize and characterize new nano-materials with an emphasis on their applications in nanotechnology and biotechnology such as catalysts, sensors, etc.

     My current research is focused on developing functional nanomaterials and seeking their application in the field of Analytical Chemistry. Recently, we have three major research directions:

(1) Separation of nanomaterials such as nanomaterials, metal clusters and carbon dots by Capillary      Electrophoresis (CE) and High-Performance Liquid Chromatography (HPLC)

(2) Synthesis of new nanomaterials for Catalysis, Imaging and Probings

(3) Development of Plasmonic-ELISA skill and Plasmonic-Biosensors.

 

 

 

Past Works : 

 

(1)毛細管電泳線上濃縮與分離生物分子

                  於毛細管電泳中添加適當中性或帶電荷之聚合物溶液(高黏度、篩分大小分子和易塗覆於管壁等特性),發現具             有避免生物分子吸附於管壁上、控制電滲流的大小、可增加分離的解析度與線上濃縮分析物等優勢,相當適用於偵測             低濃度蛋白質等分析物,並且成功應用於檢測人體體液中極微量的生物樣品。目前成果已發表於:

 

  1. Yu, C.-J.; Chang, H.-C.; Tseng, W.-L.* “On-Line Concentration of Proteins by Sodium Dodecyl Sulfate-Capillary Gel Electrophoresis with Laser-Induced Native Fluorescence” Electrophoresis 2008, 29, 483-490.

  2. Lin, C.-Y.; Yu, C.-J.; Chen, Y.-M.; Chang, H.-C.; Tseng, W.-L.* “Simultaneous separation of anionic and cationic proteins by capillary electrophoresis using high concentration of poly(diallydimethylammonium chloride) as an additive” J. Chromatogr. A 2007, 1165, 219-225.

  3. Yu, C. –J.; Tseng, W. –L.* “Online concentration and separation of basic proteins using cationic polyelectrolyte in the presence of reversed electroosmotic flow” Electrophoresis 2006, 27, 3569-3577.

 

 

(2)金奈米粒子在毛細管電泳上的應用

                 以Didecyldimethylammonium bromide(DDAB)或Poly(diallyldimethylammonium chloride) (PDDAC)修飾之金奈米粒子             做為毛細管電泳之假靜相,發現具有增加蛋白質分離的效率、縮短分離時間、減少蛋白質吸附與同時分離酸鹼蛋白質             等優點,並且已成功應用於檢測人體體液與雞蛋白。目前成果已發表於:

 

      Yu, C. -J.; Su, C. –L.; Tseng, W. -L.* “Separation of Acidic and Basic Proteinsby Nanoparticle-Filled Capillary Electrophoresis”             Anal. Chem. 2006, 78, 8004-8010.

 

 

(3)奈米粒子感應器

               過去所開發的奈米粒子感測器有下主要有兩種策略,首先係利用目標分析物導致金奈米子聚集,造成表面電漿共振           波長紅位移,以聚集奈米粒子與分散奈米粒子消光的比率對目標分析物定量。此策略所開發的感測器如下:(1)透過           控制金離子溶液的pH,可合成出粒徑分布較窄表面修飾上Gallic acid的金奈米粒子,除了可以窄化奈米粒子之粒徑分佈           外,還可藉由比色法 ( Colorimetric assay ) 進行高靈敏度與高選擇性之 Pb2+ 偵測,本實驗室所開發之感測Pb(II)金奈米感         測器,偵測極限可達10 nM。;(2)探討 Mn2+ 於比色法,對表面吸附有單股寡核甘酸 Polythymine T33 之金奈米粒               子,與 Hg2+ 進行雜交時的影響,發現可以有效改善比色法之靈敏度並加速其顏色的改變;( 3 )Hg(II)與Ag(I)離子可於             Tween 20修飾之金奈米粒子的表面沉積,移除穩定試劑Tween 20,進而導致奈米粒子聚集。利用此現象並加入適當遮蔽           試劑可開發出感測Hg(II)Ag(I)離子之金奈米粒子感測器。(4)以 3-Mercaptopropionate acid 與 Adenosine monophosphate           同時修飾於金奈米粒子上,於高鹽類下以吸收法檢測汞離子;(5)以 Human serum albumin 修飾的金奈米粒子,透過靜         電荷吸引,選擇性偵測高 pI 之 Lysozyme,並且已成功應用於偵測雞蛋中的 Lysozyme。而第二類奈米感測器偵測策略係         利用螢光分子吸附於金奈米粒子表面,因螢光共振轉移而導致螢光分子螢光消光。當目標分子出現取代螢光分子時,將         使其螢光恢復。以上所敘述之奈米感測器其成果已發表於:

 

  1. Lin, C.-Y.; Yu, C.-J.; Lin, Y.-H.; Tseng, W.-L.* “Colorimetric Sensing of Silver(Ⅰ) and Mercury (Ⅱ) Ions Based on an Assembly of Tween 20-Stabilized Gold Nanoparticles” Anal. Chem. 2010, 82, 6830-6837.

  2. Yu, C.-J.; Lin, C.-Y.; Liu, C. H.; Cheng, T. L.; Tseng, W.-L.* “Synthesis of poly(diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol” Biosensors and Bioelectronics 2010, 26, 913-917.

  3. Huang, K.-W.; Yu, C.-J.; Tseng, W.-L.*"Sensitivity Enhancement in the Colorimetric Detection of Lead(II) Ion Using Gallic Acid-Capped Gold Nanoparticles: Improving Size Distribution and Minimizing Interparticle Repulsion" Biosensors and Bioelectronics 2010, 25, 984-989.

  4. Yu, C.-J.; Cheng, T.-L.; Tseng, W.-L.* “Effects of Mn2+ on Oligonucleotide-Gold Nanoparticle Hybrids for Colorimetric Sensing of Hg2+: Improving Colorimetric Sensitivity and Accelerating Color Change” Biosensors and Bioelectronics 2009, 25, 204-210.

  5. Yu, C.-J.; Tseng, W.-L.* “Colorimetric detection of mercury (II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate” Langmuir 2008, 24, 12717-12722.

  6. Chen, Y.-M.; Yu, C.-J.; Cheng, T.-L.; Tseng, W.-L.* “Colorimetric Detection of Lysozyme based on Electrostatic Interaction with HumanSerum Albumin-Modified Gold Nanoparticles” Langmuir 2008, 24, 3654-3660.

 

 

(4)利用雷射脫附游離化質譜儀檢測生物分子

           藉由檸檬酸修飾之金奈米粒子做為基質,以雷射脫附游離化質譜儀來偵測高鹽類溶液下之生物分子,例如:膽固醇              類,以及真實樣品尿液中的尿素、肌酸酐、尿酸和葡萄糖等分析物。目前相關成果已發表於:

 

      Wu, H.-P.; Yu, C-J.; Lin, C.-Y.; Lin, Y.-H.; Tseng, W.-L.* “Gold nanoparticles as assisted matrices for the detection of biomolecules       in a high-salt solution through laser desorption/ionization mass spectrometry” J. Am. Soc. Mass Spectrom. 2009, 20, 875-882.

 

 

(5)鐵奈米粒子合成與應用

            我們發表一種簡單方法,僅需要利用共沉澱方式即可以一步合成poly(diallydimethylammonium chloride)(PDDA)修飾的           Fe3O4 NPs。此奈米粒子可透過靜電吸引力吸附glucose oxidase,形成一glucose oxidase與Fe3O4 NPs的複合物;當加入             glucose於此複合物時,glucose oxidase會催化glucose產生H2O2,此時溶液中2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic           acid) (ABTS) 會與H2O2反應,透過Fe3O4 NPs催化,氧化的ABTS在420 nm有相當強吸收。此glucose oxidase與Fe3O4 NPs         的複合物可重複偵測glucose,並且可應用於偵測血液中glucose。其成果已發表於:

 

  1. Yu, C.-J.; Lin, C.-Y.; Liu, C. H.; Cheng, T. L.; Tseng, W.-L.* “Synthesis of poly(diallyldimethyl- ammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol” Biosensors and Bioelectronics 2010, 26, 913-917.

  2. Liu, C.-H.; Yu, C.-J.; Tseng, W.-L.* “Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of Fe3O4 nanoparticles” Anal. Chim Acta 2012, 745, 143-148.

  3. Yu, C.-J.; Wu, S.-M.; Tseng, W.-L.* “Magnetite Nanoparticle-Induced Fluorescence Quenching of Adenosine Triphosphate-BODIPY Conjugates: Application to Adenosine Triphosphate and Pyrophosphate Sensing” Anal. Chem. 2013

     

     

     

     

     

     

     

     

     

 

bottom of page